
1

G52CPP
C++ Programming

Lecture 20

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

2

Wrapping up…

Slicing Problem
Smart pointers

More C++ things
Exams

3

The slicing problem

Objects are not pointers
#include <iostream>
using namespace std;

class Base
{
public:

Base() : i(1) {}
virtual void out()

{ cout <<"Base" <<i <<endl; }
int i;

};

class Sub : public Base
{
public:

Sub() { i = 2; }
void out()

{cout <<"Sub" <<i <<endl; }
};

int main()

{

Sub array1[3];

Base array2[3];

// Output Array 1

for (int i = 0 ; i < 3 ; i++)

array1[i].out();

// Output Array 2

for (int i = 0 ; i < 3 ; i++)

array2[i].out();

// Copy array 1 to 2

for (int i = 0 ; i < 3 ; i++)

array2[i] = array1[i];

// Output Array 2

for (int i = 0 ; i < 3 ; i++)

array2[i].out();

}

4
Lec18b.cpp

5

Why?
• In that example, we stored base class objects
• So when we tried to assign sub-class objects

only the base class part was stored
• We sliced off the sub-class part

• Things can get worse than this…

6

What is the slicing problem?
• Passing an object type parameter by value uses the

copy constructor – i.e. copies it
• Assigning an object to another object copies the values,

using the assignment operator
• If the thing you are copying to is a base class object (or

thinks it is!) the base class assignment operator is used
• Neither the default copy constructor nor assignment

operator are virtual
– The base class version gets used!!!
– (Just making them virtual would not help anyway – see later)

• The slicing problem occurs when you treat a sub-class
as the base class for a copy/assignment
– Only the base class parts get copied
– i.e. the sub-class parts are sliced off

7

How can it happen?
• By using references or pointers, e.g.:

class BaseClass

{

public:

int MyParam;

};

class SubClass

: public BaseClass

{

public:

int MySubClassParam;

};

int main()

{

SubClass s1, s2;

BaseClass& rs1 = s1;

BaseClass& rs2 = s2;

rs1 = rs2;

BaseClass* ps1 = &s1;

BaseClass* ps2 = &s2;

*ps1 = *ps2;

}

• The sub-class part will not be copied

8

Why?
• The slicing problem occurs when you treat a sub-class as the base

class for a copy/assignment
– Only the base class parts get copied
– i.e. the sub-class parts are sliced off

• A function like this was created and used:
Base& operator=(const Base& rhs)

{

this->MyParam = rhs.MyParam;

return *this;

}

• Rather than using the sub-class version:
SubClass& operator=(const SubClass& rhs)
{

this->MySubClassParam = rhs.MySubClassParam;

this->MyParam = rhs.MyParam;

return *this;

}

9

Advanced ‘stuff’

• Thing to remember:
– Use assignment with base class pointers and

references with care (or not at all)
– You may end up slicing off the sub-class part

• But some of this you could actually fix if
you REALLY wanted to…

• The following slides are complicated stuff,
just to show you what you COULD do if
you really wanted to, and give you a taste
of the power of operator overloading…

10

1: virtual assignment operator

• First make the assignment operator in
the base class virtual

– I.e. implement it yourself so that you can
make it virtual

virtual Base& operator=(const Base& rhs)

{

this->i = rhs.i;

return *this;

}

11

2: Sub-class assignment operator

• Add assignment operator in the sub -class
• Note: This is NOT an overload of the base

class operator= since it takes a sub -class
object reference

Sub& operator=(const Sub& rhs)
{

this ->Base::operator=(rhs);
this ->j = rhs.j;
cout << "copied sub" << endl;
return *this;

}

Use scoping to call base class version, not the sub-class one (virtual function!)

12

3: Override base class version

• In the SUB CLASS also provide an overload of the BASE CLASS
assignment operator , which checks for sub-class objects and if
so calls the sub-class assignment operator

virtual Base& operator=(const Base& rhs)
{

try
{ // If object really is a sub (sub-class object)

const Sub& rsub = dynamic_cast<const Sub&>(rhs);
*this = rsub; // Assign using 2 subclass objs

}
catch(bad_cast)
{ // Object is NOT a sub (sub-class object)

this->Base::operator=(rhs); // Use base class
}
return *this;

}

13

Smart Pointers

14

auto_ptr

• Provides one way of avoiding memory leaks
– As we have already seen

• And illustrates the way in which many of the
facilities which we have seen can be used, e.g.:
– Operator overloading
– Copy constructor
– Conversion constructor
– Template classes and template functions

• It is really useful to know about auto_ptr and
smart pointers when you develop large
programs

15

Using the auto_ptr class
void foo2()
{

// Create objects
MyClass* pOb1 = new MyClass;

// Wrap them in auto-pointers
cout << "Create auto-pointers" << endl;
auto_ptr<MyClass> a(pOb1);

cout << "Finished creation" << endl;

bar(); // throws exception

// Other code?
}

Function ends here
Stack objects are destroyed
auto_ptr objects destroy the objects
whose pointers they wrap

Template class, wraps a
pointer of the specified type

The auto_ptr is an object
on the stack
i.e. it gets destroyed when
the function ends
When destroyed the
auto_ptr will call delete
on any pointer it holds

16

simple_ auto_ptr template class
template<class T>
class simple_auto_ptr
{
private:

T* _Myptr;

public:
// construct from object pointer
explicit simple_auto_ptr (T* _Ptr = NULL) throw()
: _Myptr(_Ptr)
{

cout << "\t\tsimple_auto_ptr created" << endl;
}

// destroy the object
~simple_auto_ptr()
{

cout << "\t\tsimple_auto_ptr destroyed" << endl;
if (_Myptr)

delete _Myptr;
}

simple_auto_ptr is my cut-down version of
auto_ptr , to demonstrate the key principles.

Key part!

17

How (simple_)auto_ptr works
template<class T>
class simple_auto_ptr
{
private:

T* _Myptr;

public:
// construct from object pointer
explicit simple_auto_ptr (T* _Ptr = NULL) throw()
: _Myptr(_Ptr)
{

cout << "\t\tsimple_auto_ptr created" << endl;
}

// destroy the object
~simple_auto_ptr()
{

cout << "\t\tsimple_auto_ptr destroyed" << endl;
if (_Myptr)

delete _Myptr;
}

The wrapped object pointer

Template class – can wrap any object type

Has to be a template so that delete
knows the type of object

Destructor calls delete through the pointer

Constructor stores the pointer passed in

18

Using the (simple_)auto_ptr

// Create objects
MyClass* pOb1 = new MyClass;

// Wrap them in auto-pointers
simple_auto_ptr<MyClass> a(pOb1);

cout << "Finished creation" << endl;
bar();

MyClass constructor 1
simple_auto_ptr created

Finished creation
simple_auto_ptr destroyed

MyClass Destructor 1

Test code

Construct object

Construct auto_ptr

Throws an exception
The auto_ptr s destroy
the objects

Messages on object
creation

and
deletion

simple_auto_ptr is my simpler version of auto_ptr

19

‘Smart’ish pointer functionality

20

get() and release()

// Return wrapped pointer
T* get() const throw()
{

cout << "\t\tsimple_auto_ptr get()" << endl;
return _Myptr;

}

// Return wrapped pointer and give up ownership
T* release() throw()
{

cout << "\t\tsimple_auto_ptr release()" << endl;
T *_Tmp = _Myptr;
_Myptr = NULL;
return (_Tmp);

}

get() just gets the stored pointer – i.e. a copy of the value of
the pointer which is in the object, so function can be const

release() detaches the pointer from the object
(i.e. it alters the pointer, so not const) and returns
the pointer (delete will no longer be called on it)

21

Other functionality

• reset() is a function to replace the stored pointer
with another pointer (of same type)
– Note: it delete s any existing pointer

• operator*() overloaded
– Access the thing which internal pointer points to

• operator ->() overloaded
– Access members of a class/struct which the internal

pointer points to

• Also implements assignment operator and copy
constructor to take ownership of internal pointer

• Objects of this class are smart(ish) pointers
– Act like pointers, with a little more intelligence

22

Example of using * and ->

// Create objects and wrap them in auto-pointers

cout << "Create auto-pointers" << endl;

simple_auto_ptr<MyClass> a(new MyClass);

// get() will get the wrapped pointer

cout << "Use get()" << endl;

a.get()->print();

// * has been overloaded

cout << "Use overloaded *" << endl;

(*a).print();

// -> has also been overloaded

cout << "Use overloaded ->" << endl;

a->print();

* gets the object pointed at by contained pointer
Calls print() on the object

-> acts on the contained pointer
i.e. Calls print() through the contained pointer

Object acts
like a pointer

23

* and -> apply to the contained pointer

// Access the thing wrapped pointer points at
// Can then do . on the result
T& operator*() const throw()
{

return *_Myptr;
}

// Like doing -> on wrapped pointer
// Tell it what to actually do -> on
// Note: I think this is unusual syntax!
T* operator->() const throw()
{

return _Myptr; // -> will be used on this
}

24

Another example using *

// Create objects and wrap them in auto-pointers

cout << "Create auto-pointers" << endl;

simple_auto_ptr<MyClass> a(new MyClass);

cout << “Use the * operator to dereference:" << end l;

MyClass& rmc = *a; // Gets the object inside

// rmc is just another name for the object wrapped

// by the simple_auto_ptr ‘a’

rmc.print();

// Assume that b is another pointer like ‘a’

cout << "Now use the assignment operator on MyClass :“;

rmc = *b; // Assignment operator on objects !

rmc.print();

25

auto_ptr summary
• auto_ptr is a template class

– It knows the type of object pointer that it wraps (so
that it can call delete on it)

• When destroyed, the destructor for auto_ptr
calls delete on the wrapped object
– auto_ptr is NOT suitable for storing arrays since it

calls delete p; not delete[] p;

– Could easy create an array version though

• Call release() to detach the wrapped object
• Call get() to access the wrapped object pointer

– To potentially use it

• Operators * and -> are overloaded

26

Smart pointers

• Smart pointers: objects which act like pointers, but
are ‘smarter’

• True smart pointers can be much smarter than
auto_ptr

• e.g. perform reference counting
– Delete the resource when the last smart pointer object

which points to it is destroyed
– Check for memory leaks?

• The principles are the same as auto_ptr

• These are really useful things to have
• If used properly, they can simplify memory

management – doing the delete s for you

27

Moving on from here

We have only looked at the basics

• We have covered only the basics of C++
– None of the class libraries
– None of the recent additions

• We could cover many more modules with
content, but my hope is that by
understanding the underlying principles
you can work out the rest (read about it?)

• If you want to go for a job be aware of:
– The Standard Template Library (STL)
– C++ 11 and Boost

28

C++ 11
• C++ 11 (newly-ish standardised version)

– See page maintained by Bjarne Stroustrup:
http://www.stroustrup.com/C++11FAQ.html

• Quotes from Bjarne Stroustrup:
– “C++11 feels like a new language”

• I agree, new and optional replacement features

– “Currently shipping compilers (e.g. GCC C++,
Clang C++, IBM C++, and Microsoft C++)
already implement many C++11 features. For
example, it seems obvious and popular to
ship all or most of the new standard libraries.”

29

Boost
• Web page: http://www.boost.org/
Quotes from the web page (reformatted only):
• Boost provides free peer-reviewed portable C++ sour ce libraries.
• We emphasize libraries that work well with the C++ Standard Library.
• Boost libraries are intended to be widely useful, and usable across a

broad spectrum of applications.
• The Boost license encourages both commercial and non-commercial

use.
• We aim to establish "existing practice" and provide reference

implementations so that Boost libraries are suitable for eventual
standardization.

• Ten Boost libraries are included in the C++ Standards Committee's
Library Technical Report (TR1) and in the new C++11 Standard.

• C++11 also includes several more Boost libraries in addition to those
from TR1. More Boost libraries are proposed for TR2.

30

31

Some exam comments

32

Exam Structure
• Answer ANY three questions out of five

– There is no compulsory question this year!!!
– Each question is worth 20 marks

• Exam is 60% of course mark (and out of 60)
• 1.5 hour exam not 2 hours

– Exam is a bit shorter than last year
– 30 minutes per question
– Many people left early last year, but still did well
– Possible to do REALLY well (e.g. 99% or 100%)

• Similar structure and type of questions to last year
– Possibly more “write code to…”

• Question heading will give you an idea what the question is about,
where that won’t give away the answer
– However, most questions have a part asking you to work out what

some code sample outputs or what is wrong with it (~40% marks)

Resit exam

• Ignore this slide if you are not doing a resit

• Note that the resit exam is different
– For people sitting resit now, and for people

who may need to resit it later

• No coursework component
• Answer any 4 out of 6 questions (not 3/5)
• 25 marks and 25% each question (not 20!)
• 2 hours rather than 1.5 hours

33

Exam Content
• Most concepts appear somewhere on exam
• Standard class library not needed, except:

– Recognise that cout << v means output/print the value of v
and be able to make simple examples of this

– Know basics of the string and vector classes
• As seen in lectures, i.e. understand lecture samples

• Know the common C -library functions
– What a function does, not parameter details
– File access, string functions, input and output

• Ensure that you can create a template function and
operator overload
– And a macro (#define) and understand the difference

• Understand about conversion constructors and operators,
copy constructors and assignment operators

34

Things to know
• You need to know char* type C-strings

– Where the char* points to an array of chars with a 0 at the end

• Be aware of array bounds issues and pointer arithmetic
Know about:
• Pass/return by value vs by reference/pointer
• Inheritance, virtual and non-virtual functions

• Exceptions and exception handling
• Function pointers
• Casting (static vs dynamic, const and reinterpret)
• const members, parameters, references, pointers
• static local variables, static members
• struct vs class vs union

35

36

Hints

• Pick and choose your questions according
to what you are good at
– Obvious? Why do so many people do Q1,2,3?

• Take some time to work out what each
question (part) is asking
– Is it something that you know how to do?

• Check the rest of the paper if you are
stuck – sometimes it may jog your memory
– e.g. does a code sample answer something?

What now?

• Note: If there are any specific old exam
questions that you want me to go through
then please tell me in advance

• Revision lecture tomorrow, 10am
• Chance to ask questions at 2pm Friday
• Go through example code type questions

– What is the question asking?
– What do I need to know to answer it?
– Are there any tricky bits?
– What is the answer? 37

